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_lhsttact

:h,, air, raf_ parameter estimation problem is

_se(t tq _)}ustrate the utility of parameter esti-

m_tl()p, whi,;h applies to many engineering and

qciPnt_f1_ fields. Maximum likelihood estimation

,_, he_r_ used to extracc stability and control

,Ipr'ivatives fr)m flight data for many years. This

uap_r presents SOme of the basic concepts of air-

craft _ara,._,ter estimation and briefly surveys

the literature in the field. The maximum likeli-

rmod estimator is discussed, and the basic con-

cepts of minimization and estimation are examin_

for _ simple simulated aircraft example. The cost

functions that are to be minimized during estima-

tion are defined and discussed. Graphic represen-

tations of the cost functions are given tO illus-

trate the mlnimization process. Finally, the

m_sic concepts are generalized, and estimation

from flight data is discussed. Some of the major

,onclusions f{)r the simulated example are also

develnped for the analysis of flight data from the

f-14, highly maneuverable aircraft technology

(fliMAT), and space shuttle vehicles.
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rolling moment divided by Ix.

deg/sec?; or, iteration

number

rolling moment, ft-lb

rolling moment due to yaw .>et,

ft-lb per jet

Mach number

number of time points or cases

state noise vector; or, number of

unknowns

roll rate, deg/sec

dynamic pressure, Ib/ft 2

Reynolds number

yaw rate, deg/sec

Nomenclature time, sec

Ix, ]y,

IZ, Ixz

_ystem matrices

lateral acceleration, g

c_Pfficient of rolling moment

_,)eftlcient of pitching moment

_,)efficient of yawing moment

equivalent dynamic directional

_tability

coefficient of sideforce

general functions

measurement noise covariance matrix

approximation to the information

matrix

moment of inertia about subscripted

axis, slug-ft 2

cnst function

*Substantial p_)rtions of this paper are

taken from two publications of the author.

Refs. i and 2.

**Chief, fluid and Flight Mechanics Branch,
AIAA Fpll()w.
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control input vector

total velocity, ft/sec

state vector

observation vector

predicted Kalman-filtered estimate

angle of attack, deg

angle of sideslip, deg

time sample interval, sec

control deflection, deg

aileron deflection, deg

differential elevon deflection, de]

rudder deflection, deg

measurement noise vector

mean

vector of unknowns

standard deviation

time, sec



transition matrix; or, bank angle,

deg

integral of transition matrix

Subsc r ipts

p, r. _, _,

6a, 6{)E, 6r

L)

partial derivative with respect to

subscripted variable

bias; or, at time zero

v)in minimum value

predicted estimate

estimate

transpose

Introduction

It is difficult to present a topic as special-

ized as aircraft parameter estimation in a way

that will interest a generalized audience of

mathematicians, scientists, and engineers. The

approach here is to portray parameter estimation

as a specialized "curve-fitting" technique that

can be applied to a broad class of problems. Much

effort is expended in a variety of disciplines on

a form of curve fitting, more specifically, the

correlation of observed or inferred data with an

assumed (though perhaps in a high- or infinite-

dimensional space) mathematical model that is

based on phenomenological considerations, This

broad class of problems is referred to as system

identification.

Fhe application of system identification,

sometimes referred to _s the inverse problem

(paraphrased as, Given the answer, what is the

question?), presumably goes back to prehistoric

times as humanity tried to master the environment

by understanding, based on observation, certain

phenomena (probably simple ones). Many of the

physical laws stated by the Chinese, Egyptians,

and Greeks were based on the same principles as

are currently used in system identification.

Through advancing technology and mathematical

rigor, we can apply much more sophisticated tech-

niqups for making observations and for deducing

the _jnderlying phenomenology , but the basic prob-

lem of system identification remains the same.

For most physical systems, information about

the general form of the system to be identified

often can be derived from knowledge of the system.

The most widely applied subfield of system identi-

fication is parameter identification, where the

form of the mathematical model is assumed to be

known. The model (an explicit function, a polyno-

mial expansion, a look-up table, a finite-state

machine defined for application of artificial

intelligence, or many other forms) contains a

finite number of parameters, the values of which

need to be deduced or identified from the obser-

vations. One of the favored forms of the model

for the most successful application is the state-

space form (a rigorous treatment of state-space

forms is given in Ref. 3). State-space models are

very useful for dynamic systems, in which responses

are time functions. Autoregressive moving average

(ARMA) models are also widely known; however,

discrete-time ARMA models can readily be rewritten

as linear state-space models, 4 so the discussion

of state-space models presented in this paper is

applicable to ARMA models.

An assumed model will not be an exact repre-

sentation uf the system no matter how carefully

its _,rm is selected. The experimental _atd will

not be consistent with the assumed model for any

parameter values. The model may be close but will

not be exact, if only because the measurements or

observations will be made with real, thus imper-

fect, sensors. Errors in observations and in the

model need to be evaluated in determining the

unknown parameters of the model. So the objective

becomes the application of the "best" model (in

some sense), instead of the correct model, to find

the "best" estimates o, the unknown parameters;

this process is referred to as parameter estima-

tion. The currently favored approach to parameter

estimation, and the one discussed in this paper,

is to minimize the error, in the least squares

sense, between the model response and the actual

measured response; the estimates resulting in the

minimum error are the "best" estimates. The

theoretical formulltion 5 and application6 of the

output error technique (which is a maximum likeli-

hood technique that is used throughout this paper)

have been thoroughly documented.

Although the applications described in this

paper pertain to aircraft, the techniques have

been successfully applied in other fields where

the mathematical model and observations are ade-

quate. Parameter estimation may sound llke one

more arcane subject, but it has application in any

field where observations must be made to agree

with the assumed physics of a problem. There are

many obvious _pplications in a variety of fields,

such as, spacecraft dynamics, gravitational per-

turbations, fluid dynamics and mechanics, optimal

control, and guidance.

The application of the maximum likelihood

technique for parameter estimation of aircraft

coefficients demonstrates a successful application

of system identification technology. Analysts

in the aircraft community accept and use system

identification techniques on a routine basis.

Although there are isolated problems (primarily in

extending the application to more difficult flight

regimes, such as where the aircraft is dominated

by poorly understood separated flow), there _s

little doubt that the basic application is highly

successful. Contributing to this success are a

well-understood, time-tested,7, 8 physically

derived model form that is reasonably represent-

ative of the true vehicle in most flight regimes;

high-quallty measurements of several relevant

states; the ability to apply inputs specifically

for system identification; and engineers familiar

with system identification, aerodynamics, aircraft

equations of motion, and the associated aerodynamic

coefficients.

This paper first presents a brief survey of

the contributions to system identification, and

specif_cally aircraft parameter estimation, up to

1980, when the maximum likelihood technique began

to completely dominate the field. (Refs. 6 and 9



givea broadviewof contributionssince1980.
Ref.9 is a bibliographyof nearly500books,
papPrs,andreportsrelatedto parameteresti-
mation.) Somecommonusesof theestimated
parameters are then discussed. The technique

used f()r parameter estimation is then described.

fol)owed hy an examination of the computational

detal}s and (t;st functions involved in error mini-

mizatlnn. _}nally, applications of the technique

for improving high-performance aircraft and the

spat*" _mlttl- ,are described.

Tn, tr,ut,,ition from hit-and-miss, rule-of-thumb

syste_ identification to mathematically Sound

,_pproaches has heen gradual; certainly no single

verm_nal work can he referenced. Gauss, I0 in

I_09, discussed the inverse (system identifi-

cation) problem and suggested some statistical

approaches that are relevant even today. The

discusslons (_f Douglas, II in 1940, and Gelfand

and LPvitan, |2 in 1951, pertaining to the inverse

problem certainly qualify as truly significant

wnrks contributing to the state of the art, Th_

formulation by Feldbaum, 13 one of the more sig-

nificant works aimed at the current direction of

_nvestigation, is somewhat different than others

discussed, hut he did look at identification and

control of the system as a single problem, the

"dual control" problem. During the 1960s, a

plethora of publications was evidence of increased

interest in problems nf this type. Much of this

Interest was stimulated by the well-known early

works of Kalman.

The hulk ()f general system identification

the(_ry and appl ication up to _gSO has been sum-

mar:zeal in several excellent survey papers. !4-II

Th. syst,.m identification problem can be

dlVld_,d lnto tw() major SUbSetS: deterministic

(w]thout ,_tate n()ise) and nondeterministic (with

state n()i_P), There are two classes of tech-

nl(|Ues for identification of nondeterministic

systems: th, Kalman filter (or more generally,

the extended Kalman filter) technique and the

maximum likplihoo(l technique. Many precise

,_pplicat_(_n_ do not truly fall into these classes,

hut tnpy do tend to mimic one of the two tech-

niques. The extended Kalman filter (discussed

by Astr_mIH and Kashy_p 19) has been widely

applied; hnwever, this paper primarily examines

the maximum likelihood estimator, proposed by

Halakrishnan 20-22 and developed in Refs. 23 and 24.

Aircraft Identification

In the following chronological survey of

investigations that led to the development and

widespread acceptance of the maximum likelihood

estimation technique for aircraft coefficient

estimation, the more Straightforward deterministic

analysis is discussed first, followed by a brief

discussion _f nondeterministic analysis. Some of

the investigations ]n estimation of unknown coef-

ficients fr_)m aircraft dynamic response data are

contained in R_fs, 25 and 2h. The National

Advisory Co_nittee on Aeronautics (NACA) had been

publishing reports on stability derivatives

(coefficients of the differential equations of

motion) since the early 1920s. (The reports by

Norton7, 8 involved the identification of frequency

and damping ratios from flight data.)

Deterministic Anal_. The sophistication

and complexity of the methods used to estimate

unkr,own coefficients from aircraft dynamic flight

responses have increased over the past 4U years.

In the late 1940s and early 1950s the frequency

response methods {including steady-state oscilla-

tor analysis 27 and Fourier analysis 28) increased

in popularity in aircraft analysis and in other

applications. These mut_,_)ds yield the frequency

response of the vehicle hue not the coefficients

of the differential equations. Attempts were made

to extract these coefficients by selecting values

o_ the aircraft coefficients that resulted in the

best fit of the frequency response,29, 30 Regres-

sion techniques, such as linear least squares 31

and weighted least squares 30 techniques, were

also applied to flight data at about that time.

Unfortunately, regression techniques give poor

results in the presence of measurement noise and

yield biased estimates. The time vector tech-

nique 32 has also been applied to flight data;

however, it yields an incomplete set of coef-

ficients, and the types of responses that can be

analyzed are restricted to fairly simple motions.

Analog matching techniques32, 33 (time consuming

and somewhat tedious) have also been applied to

flight data but are limited because resulting

estimates vary with the skill and technique of

the operator. Comparisons of these early tech-

niques34, 35 showed that a more complete method

of identification was needed.

In 196@, two independent studies36, 37 of

non!inear minimization methods (output error

methods) for obtaining aerodynamic coefficients

were published, one describing the maximum likeli-

hood estimator36. 38 (with a Gauss-Newton tech-

nique) to obtain a complete set of aerodynamic

coefficients from flight data and the other

describing a quasilinearization technique37, 39 to

estimate some coefficients of an aircraft. One

reason for the early success of these two methods

is that previous research had furnished a well-

defined model that adequately described the

resulting motion of the vehicle. These two early

results of aircraft identification by nonlinear

minimization renewed interest in analysis of

flight data. There was a later modification to

these techniques to include a p_o_L informa-

tion.40 The minimization of this modified cost

functional does not result in a maximum likelihood

estimator, because it is based on the joint proba-

bility distribution rather than the conditional

probability. Other successful computer programs

have been reported. 41-44 Extensive experience at

many installations25.26, 45-58 had been obtained

using the maximum likelihood estimator technique

on dynamic flight responses.

Another approach. Similar to these output

error methods, WaS the application of the Kalman

filter 59 to _stimate the aerodynamic coefficients.



Some of the early results obtained by the Kalman

filter technique were unsatisfactory, that is, the

estimates of both the states and the parameters

were biased and did not always converge to reason-

ah)e results. Improved results were obtained by

adding the derivative of the state. 60 A weakness

of the Kalman filter method is its dependence on

the covariance matrix obtained from the filter.60

However, a technique was developed for obtaining

estimates of the covariance matrix with a Subop-

tlmal Kalman filter. 59 A Successful application

()f the Kalman filter to provide the state esti-

mates used for the estimation of stability and

(untrr, l derivatives and performance parameters

was sul,sequently described 01,62

Non_eter_,inis__t]c Anal_sis. As previously

mentioned, two classes of techniques were offered

for the estimation of systems with measurement

and state noise; the Kalman filter (or more

generally, the extended Kalman filter) tech-

nique1_,lq,5g.60.63, 64 and the maximum likeli-

hood technique.21-23,65, 66 The maximum likeli-

hood estimator for the nondeterministic case is

usually referred to as the filter error method.

The general application of the extended Kalman

filter was discussed in Refs. 18 and 19. The

extended Kalman filter for the discrete-time case

was applied to simulated aircraft data with a

state noise input. 6g A similar application 63 to

aircraft flight response data gave inconclusive

results because the state noise input was small

and the system was nonlinear. Somewhat better

results were obained with an application of a

_Ireatly simplified extended Kalman filter

techo lqUe,h4

The, I,dxilqulq likelih(}od estimator was applied

to response data of an aircraft flying in atmos-

pheri( turbulence; 23 the resulting coefficients

wPrP irl a_}reement with results obtained for the

same aircraft flying in smooth a_r, that is,

wTth(}ut stat_, noise.

M_st {)t the results presented in this paper

are hosed nn an output error method program; 67

the lliff-_aine code of this program is capable

ot usln(} the Maine-If ill formulation 68 (which

can account for effects of state noise), although

this feature is not used for the examples in

this paper.

I_asic Uses of Fli_ht-Determined Coefficients

The extraLtion of unknown aerodynamic coef-

ficients or stability and control derivatives

from flight data has been of interest for many

years.l, H The coefficients are used to provide

tlnal wrification of the predicted full-scale

de_iqn and to assist in the flight testing and

verification of overall aircraft systef _ perform-

an(p.l, 45 After the analysis of the flight

test data, the air( raft coefficients can be com-

par_d with calculated coefficients, estimates from

c(,_pulational fluid dynamics, and wind tunnel pre-

diLtl_mS, and these comparisons can be used to

update prediction methods for the improvement of

futurf, air(raft designs. 1,46 Once an aircraft is

built, the coefficients play an important role in

the expansion of the flight test envelope.I, 47

As estimates of the derivatives become available,

they are used to upgrade fixed-based simulators to

assist in flight planning and aircraft control

system modification.l, 48 In addition, the flight-

determined coefficients can be used to establish

compliance with the desired design specifications.

Flight-determined coefficients are also used to

establish the accuracy of a_rborne simulations 49

and to identify aircraft parameters for adaptive

control.23

Definition of Estimation Techni_

The parameter estimation problem can be

defined quite simply in general terms, The sys-
tem under investigation is assumed to be modeled

by a set of dynamic equations containing unknown

parameters. To determine the values of the

unknown parameters, the system is excited by a

suitable input, and the input and actual system

response are measured. The values of the unknown

parameters are then inferred based on the require-

ment that the model response to the given input

match the actual system response. When formulated

in this manner, the unknown parameters can be

identified easily by many methods; however, com-

plicating factors arise when application to a

real system is considered.

The first complication is the impossibility of

obtaining perfect measurements of the response of

any real system. The inevitable sensor errors are

usually included as additive measurement noise in

the dynamic model, and the theoretical nature of

the problem then changes drastically. It becomes

impossible to identify exactly the values of the

unknown parameters; instead, the values must be

estimated by some statistical criterion. The

theory of estimation in the presence of measure-

ment noise is relatively straightforward for a

system with discrete time observations, requiring

only basic probability.

The second complication of real systems is the

presence of state noise, State noise is random

excitation of the system from unmeasured sources,

the standard example for the aircraft stability

and control problem being atmospheric turbulence.

if state noise is present and measurement noise is

neglected, the analysis results in the regression

algorithm. 6

When both state and measurement noise are con-

sidered,68 the problem is more complex than in the

cases that have only state noise or only measure-
ment noise.

The final complication for real systems is

modeling. It has been assumed throughout this

discussion that for some value (called the best

value) of the unknown parameter vector, the system

i_ correctly described by the dynamic model.

Physical systems are seldom described exactly by

simple dynamic models, so the question of modeling

error arises. No comprehensive theory of modeling

error is available. The most common approach is

to ignore it; any modeling error is simply treated

as state noise or measurement noise, or both, in

spite of the fact that the modeling error may be

I_ I_'_'_¸¸ _

L
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her than random. The assumed

_Io_tjst!cs can then be adjusted to include
_ the contribution of the modeling error. This pro-

i cedure is not rigorously justifiable, but combined
with a carefully chosen model, it is probably the
h_st approach available.

It is possible to mak_ a more precise, mathe-

matically prohabilistic statement of the parameter
_stimation prohlem. The first step is to define

the general system model (aircraft equations of
_otion), which can he written in the continuous-
d_screte furm as

x(to) : xo (1)

_(t : fix(t), u(t), C] + F(¢)n(t) (2)

z(t, = 9[x(ti), u(ti), _] + G({)ni
I
(3)

where x is the state vector, z is the observation

vect()r, f and g are system state and observation
functions, u is the known control input vector,

is the vector of unknown parameters, n is the
state noise vector, n is the measurement noise

vector, F and G are system matrices, t is time,
and • denotes derivative with respect to time.
The state noise vector is assumed to be zero-mean

white Gaussian and Stationary, and the _asurement
noise vector is assumed to be a sequence of inde-
pendent Gaussian random variables with zero mean

and identity covariance. For each possible esti-
mate _)f the unknown parameters, a probability

that the aircraft response time histories attain
values near the observed values can then be

defined. The maximum likelihood estimates are

defin_i as those that maximize this probability.

Maximum likelihood estimation has many desirable
statistical characteristicS; for example, it
yieins asymptotically unbiased, consistent, and

efficient _stimates. 3_

If there is no state noise, then the maximum
likelihood estimator n_nimizes the cost function

N

I Z [z(ti) - _E(ti)]*(GG*) -I

l
[z(ti) - _c(ti)] + _N In (GG* I

(4)

where G(;* is the measurement noise covarlance

matrix. _(t i) is the predicted response estimate

nf z at ti for a given value of the unknown-

parameter vector { (with ~ denoting predicted
estimate), N is the number of time points, and

* denotes transpose. The cost function is a func-
tion ef the difference between the measured and

computed time histories.

If Eqs. (?) and (3) are linearized (as is the

case for the stability and control derivatives in
the aircraft Drohleml,

×(to)= x0 (S)

_(t) " Ax(t) + Bu(t) + Fn{t) (6)

z(ti) : Cx(ti) + Du(ti) + Gni (7)

where A, B, C, and D are system matrices. For the

no-state-noise case, the ){(ti) term of Eq. (4)
can be approximated by

R_(to) = xo(_) (8)

R_(ti+l) = @R_(t+) + _[u(ti) + u(ti+l)]/2 (9)

z((ti) = CRE(ti) + Ou(ti) (I0)

where the transition matrix _ and the integral of

the transition matrix, _, are given by

@ : exp[A(ti+l - ti)] (lla)

ti+l: exp(A_) d_ B

Jti
(11b)

When state noise is important, the estimator

based on the nonlinear form of Eqs. (I) to (3) is

intractable, and ad hoc techniques are required. 69

To minimize the cost function J(E), we can

apply the Newton-Raphson algorithm (or some other
minimization technique), which chooses successive

estimates of the vector of unknown coefficients,
(* denoting estimate). If L is the iteration

number, then the L + I estimate of _ is obtained
from the L estimate as

CL+I : EL - [V_O(EL)]'I[v_J(_L)] (12)

If (GG*) -I is assumed fixed, the first and second

gradients are defined as

N

VCJ(_) = - _ [z(ti) - zc(ti)]*(GG*)-l[vc_c(ti)]
i=I

(13)

N

V_J(C) : i_l[V_((ti)]*(GG*)-1[_c(ti)]

N

[z('i) - z((ti)]*(GG*)[V_26(_ ti)]
i:1

(14a)

The Gauss-Newton approximation to the second gra-
dient is

N

v2(J(E) _=i_l[V_z((ti)]*(GG*)-l[v_z((ti)]
(14h)

The Gauss-Newton approximation is computationally

much easier than the Newton-Raphson method because
the second gradient of the innovation never needs
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to he calculated. In addition, it can have the
advantage of speeding the convergence of the
algorithm, as is discussed in Ref. 6.

Figure 1 illustrates the maximum likelihood
estimation concept. The measured response is com-
pared with the estimated response, and the dif-

ference between these responses is called the
,esponse error. The cost functions of Eqs. (4)
and (Ill include this response error. The miaimi-

l_tion dl_)orithm is used to find the coefficient
rallies that minimize the cost function. Each

iteratron or this algorithm provides a new esti-
_,ate of the unknown coefficients on the basis of

the response error. These new estimates of the
coefficients are then used to update values of the
coefficients of the mathematical model, providing

a new estimated response and therefore a new
rpsponse error. The updating of the mathematical
model continues iteratively until a convergence

criterion is satisfied. The estimates resulting
from this procedure are the maximum likelihood
estimates.

The maximum likelihood estimator also pro-

rides a measure of the reliability of each esti-
mate based on the information obtained from each

dynamic maneuver. This measure of the rellabil-

ity, analogous to the standard deviation, is

called the Cram_r-Rao boundS, 24 or the uncer-

tainty level. The Cram_r-Rao bound as computed
hy current programs should generally be used as a
measure of relative accuracy rather than absolute

accuracy. The bound is obtained from the approx-
imation to the information matrix, H, which is

based on Eq. (14b); the actual information matrix
is defined when evaluated at the correct values

(not maximum likelihood estimates) of all the
coefficients. The bound for each unknown is the

square root of the corresponding diagonal ele-

ment (_f H'I; that is, for the ith unknown, the

Craln&r-Rao bound is H_(i,i).

The formulation and the minimization algorithm

prevl_usly disct_ssed (Eqs. (4) to (14)) are imple-
_nented with the Iiiff-Maine code (MMLE3 _ximum
likelihood estimation program). The program and

computational algorithms are described fully in
Ref. _7. All the computations shown and described
in the remainder of this paper use the algorithms

Pxactly as described in Ref. 67.

Simple Si_nulated Example

For the discussion that follows, some knowl-

edge of differential equations is assumed. A
full derivation and a discussion of the aircraft

equations of motion are given in Ref. 6,

The hasic concepts involved in a parameter

estimation problem will be illustrated by a simple
simulated example representative of a realistlc
problem: an aircraft that exhibits pure rolling

motion from an aileron input. This example,
although simplified, typifies the motion exhibited
hy many aircraft in particular flight regimes,

such as the F-14 aircraft flying at high dynamic
pressure, the F-I11 aircraft at moderate speed

with the wing in the forward position, and the
T-37 aircraft at low speed.

Derivation of an equation describing this
motion is straightforward. Figure 2 illustrates
an aircraft with the x axis perpendicular to the
plane of the figure (positive forward on the
aircraft). The rolling moment L', roll rate p,

and aileron deflection 6 are positive as shown.
For this example, t_e only state is p, and the

only control is _. The result of summing
moments is

IxP = L'(p, 6)

where IX is the rolling moment about the

subscripted ix) axis. The first-order Taylor
expansion then becomes

(15)

= aL aL d6 (16)
_p dp + ---_-

assuming small perturbations and using the nota-
tion

= Lpp + L66 (17)

where

L = L'/I x

and the subscripts p and 6 denote partial deriva-

tive with respect to the subscripted variable.

Equation (17) is a simple aircraft equation

where the forcing function is provided by the
aileron and the damping by the damping-in-roll

term Lp. In subsequent sections we examine in

detail the parameter estimation problem where
Eq. (17) describes the system. For this single-

degree-of-freedom problem, the maximum likelihood

estimator is used to estimate Lp or L6, or both,

for a given simulated time history.

We will assume that the system has measurement
noise but _o state noise; therefore, we can use
Eqs. (1) to (3). Equation (4) then gives the cost
function for maximum likelihood estimation. The

weighting (GG*)"1 is unimportant for this problem,

sO let GG* = I. For our example,

xi = Pi

zi = xi

Therefore, Eq. (4) becomes

(18)

1 N L6)]2
Z1 r= LP! - Pi(Lp, (19)J(Lp, L_) _ i=

where Pi is the value of the simulated measured

response p at time ti and Pi(Lp, L6) is the esti-

mated time history of _ at time ti for Lp = Lp



and 16 = [6. Throughout the rest of this paper,

where simulated data (not experimental flight

data) are used, the simulated measured time

history refers to Pi, and the estimated computed

time history, which varies with each iteration,

is _i(Lp, L6). The estimated time history is

a function of the current estimates of Lp and L_,

but the simulated measured time history, Pi,

is not.

The most straightforward method of obtaining

P1 is with Eqs. (_) and (9). 'I_s]ng the previously

stated notation,

where

Pi+l :¢_i + ,(ai + *i+1)/2 (20)

¢ : exp(Lpa) (21)

_0 A L611 - exp(Lpa)]exp(LpT) d_ L6 =

Lp

and a is the length of the sample interval,

ti+1 - ti.

(22)

The maximum likelihood estimate is obtained by

minimizing the cost function (Eq. (19)), which is

done by applying the Gauss-Newton method. Equa-

tion (12) is used to determine successive vof the

estimates of the unknowns during the minimization.

For this simple problem, _ = [Lp [6]*, and

successive values of [p and [6 are determined by

updating Eq. (12). The first and second gradients

of Eq. (12) are defined by Eqs. (13) and (14b).

We now can write the entire procedure for

obtaining the maximum likelihood estimates for

this simple example. To start the algorithm,

initial estimates of Lp and L6 are needed

to define the value ZO- Using Eq. (12), CI and

suhsequently _L are defined by using the first

and second gradients of J(Lp, L_) from Eq. (19).

The gradients for this particular example, from

Eqs. (13) and (14b), are

N

v_J(_ L) = - _ (Pi - Pi)V_13i (23)
i=i

N

v_J(E L) ---Z (VcPi)*VcI3i
i=}

(24)

Co_C_o__putationa] Details of Minimization

In the previous section we specified the

equations for a simple example and described the

procedure for obtaining estimates of the unknowns

from a dynamic maneuver. In this section we give

the computational details for obtaining the esti-

mates. Some of the basic concepts of parameter

estimation are best shown with simulated measured

data, where the best (correct, in this simulated

case) answers are known. Therefore, in this sec-

tion we study two examples involving simulated

time histories. The first example is based on

data that have no measurement noise, which results

in estimates that are the same as the correct

values. The second example contains significant

measurement noise; consequently, the estimates are
net the same as the correct values.

For this simulated example, i0 points (time

samples) are used. The simulated measured data,

which we refer to as the measured data, are based
on Eq. (17). We use the same correct values

Lp = -0.25CJ and L5 = 10.0 for both examples.

In addition, the same input 6 is used for both

examples, the sample interval A = 0.2 sec, and

the initial condit]ons are zero. Tables of all

the significant intermediate values of the calcu-

lations are given in Ref. 6. In both examples,

the initial values defining EO are Lp = -0.5 and
La = 15.0.

Example With No Measurement Noise. The simu-

lated measured time history of aileron deflection

for the case with no measurement noise (no-noise

case) is shown in Fig. 3. The aileron input

starts at zero, goes to a fixed value, and then

returns to zero. The resulting simulated measured

roll rate time history is also shown.

Table I gives the values for Lp, C6, and J for

each iteration, along with the values of _ and

needed for calculating Pi- In three iterations

the algorithm converges to the correct values to

four significant digits for both Lp and L6.

Figure 4 shows the match between the simulated

measured data and the estimated data for each of

the first three iterations. The match is very

close after two iterations and is nearly exact
after three.

Although the algorithm converges to four-digit

accuracy in Lp and L6, the value of the cost func-

tion J contim_es to decrease rapidly between

iterations 3 and 4. This is a consequence of

using the maximum likelihood estimator on data

having no measurement noise. Theoretically, with

infinite accuracy the value of J at the minimum

should be zero. However, with finite accuracy the

value of J becomes small but never reaches zero.

This value is a function of the number of signifi-

cant digits. For the 13-digit accuracy used here,

the cost eventually decreases to approximately

O.J x 10-28.

Example With Measurement Noise. The simulated

measured data used in the case with measurement

noise (noisy case) are the same as those used in

the previous section, except that pseudorandom

Gaussian noise is added to the roll rate (Fig. 5).

The signal-to-noise ratio is quite low in this

example (compare Figs. 3 and 5). The values of

Lp, L6, ¢, _, and J for each iteration are given

in Table 2. The algorithm converges in four

iterations. The behavior of the coefficients as



vergence is much like that in the

J no-noise case. The most notable result of this

_" case is that the converged values of Lp and L 6 are

somewhat different from the correct values. The

match between the simulated measured and estimated

t_me histories is shown in Fig. 6 for each itera-

tion. No change in thf match is apparent for

_terations 2 and 3. _he match is very good con-

sidering the amount of measurement noise.

In Fig. I, the time history estimated using

the no-noise estimates of Lp and L6 is compared

with that _s_ng the nolsy estimates of Lp and L 6.

l_ecaJse th_ algorithm converged to values somewhat

diffprent fr{)m the correct values, the two esti-

_ated tlme hist()ries for their respective values

i_._ _rP ,_imilar hut not identical.
The accuracy ot the converged elements can be

assessed hy looking at the Cram@r-Ran inequal-

ity24, 6/ discussed previously. The Cram@r-Ran

hound can be obtained from an approximation tO

the information matrix H, where

I_ I -Ivj_(ti )1 -IH -I = 2Jmin [V_c(ti)]*(GG*) /(N-I)
i

The Cram#r-Ran bounds for Lp and L6 are the square

rents of the diagonal elements of the H -I matrix,

i (,r _HZH-I(I,I) and H_F_-T(2,2), respectively. The

Cram@r-Ran bounds are 0.1593 and 1.116 for Lp and

L6, respectively. The differences between Lp and

Lp and between [6 an,1 L6 are less than their

_ r_pective hounds.

C_)St Functions

_- In the prPvious section we obtained the maxi-

__' mum likelih()od estimates for simulated time
h1_t{)ri_ hy minimizirlg the values of the cost

>
f,mci}(ms. To tully understand what occurs in

_I thi% minimization, we must study in more detail
- the _(_r_;t()f the cost functions and some of their

more important cnara(teristics. In this section,

the c()st function for the no-noise case is dis-

(:_ssPd briefly, The cost fur,ction for the noisy

case is then discussed in more detail. The same

two thee histories studied in the previous section

are examined here. The noisy case is more inter-

esting because it has a meaningful Cram_r-Rao

ho_md and is more representative of aircraft

flight data.

It is important to remember that in this paper

everything related to cost functions (Eq. (19)) is

based nn simulated ti._e histories that are defined

hy Eq. (17). For every measured time history we

might (hoos_, (simulated or flight data), a com-

plete cost tunction is defined. For the case of

n variables, the cost function defines a hyper-

surface of n + i dimensions. We could avoid

bothering with the minimization algorithm if we

could ¢nnstruct this surface and look for the

minimum, but this is not a reasonable approach,

because the null]her of variables is generally

!jreatmr than two, Therefore, the cost function

can h_ des_rihed mathematically but not pictured

graphi ca! ly.

One-Dimensional Case. To illustrate the many

aspects of cost functions, it is easiest to look

first at cost functions having one variable. In

an earlier section, the cost function of Lp and L 6

was minimized. That cost function is most inter-

esting in the Lp direction. Therefore, the one-

variable cost function studied here is J(Lp),

with Lhe correct vaI[_e of L_ : IO.U. Figure

shows the cost function plotted as a function of

Lp for the no-noise case. As expected for this

case, the minimum cost is zero and occurs at the

correct value of Lp = -_).25()(]. It is apparent

that t_e cost increases much more slowly for a

more negative Lp than for a positive Lp. In fact,

the slope of the curve tends to become less nega-

tive where Lp < -I.0. Physically this makes sense

hecause the more negative values of Lp represent

cases of high damping and the positive Lp repre-

sents an unstable system. Therefore. the Pi for

positive Lp becomes increasingly different from

the measurea time history for small positive

increments in Lp. For very large damping (very

negative Lp), the system would show essentially no

response. Therefore, further large increases in

damping result in relatively small changes in the

value of J(Lp).

In Fig. 9, the cost function based on the

noisy case time history is plotted as a function

of Lp. The correct Lp value (-0.2500) and the

Lp value (-0.3218) at the minimum of the cost

(3.335) are both indicated on the figure. The

general shape of the cost function in Fig. 9 is

similar to that shown in Fig. 8. Figure 10 com-

pares the cost functions based on the noisy and

no-noise cases. The comments relating to the cost

function based on the no-noise case also apply to

the cost function based on the noisy case. Figure

10 shows clearly that the two cost functions are

shaped similarly but shifted in hoth the Lp and J

directions. Only a small difference in the value

of the cost would be expected far from the minimum

because the "estimated" time history is so far

from the simulated measured time history that it

becomes irrelevent as to whether the simulated

measured time history has noise added. Therefore,

for large values of cost, the difference in the

two cost functions should be small compared with

the total cost.

Figure 11 shows the gradient of J(Lp) plotted

as a function o; Lp for the noisy case. Finding

the zero of this function (or equivalently, the

minimum of the cost function) using the Gauss-

Newton method was discussed previously. The

gradient is zero at Lp = -0.3218, which corre-

sponds to the value of the minimum of J(Lp).

The usefulness of the Cram_r-Rao bound was

discussed in the Example With Measurement Noise

section. It is useful to digress briefly to

discuss some of the ramifications of the Cram_r-

Ran bound for the one-dimensional case. The

Cram_r-Rao bound has meaning only for the noisy

case. In the noisy example, the estimate of Lp

is -0.3218, and the Cram_r-Rao bound is 0.0579.

The calculation of the Cram_r-Rao bound was
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defined in the previous section for both the

one-dimensional and the two-dimensional examples.

The Cram_r-Rao bound is an estimate of the stand-

ard deviation of the estimate. The scatter in th_

estimates of Lp should he of about the same magni-

tude as the estimate of the standard deviation.

For t,_ ()he-dimensional case discussed here, the

ra,ge {Lp : -U.321_ plus or minus the Cram_r-Rao

hound, {),()S/g) nearly includes the correct value

Lp = -(I.25(J(l. [f noisy cases are generated for

many time histories (ddding different measurement

noise to each time history), then the sample mean

and sample standard deviation of the estimates for

these cases can be calculated. Table 3 gives the

sample mean u, sample standard deviation o, and

the standard deviation of the sample mean, o/I_',

for 5, I{}, and 21) cases. The sample mean, as

expected, gets closer to the correct value of

-0.250(} as the number of cases increases. This

is also reflected in the table by the decreasing

values of o/_, which are estimates of the error

in the sample mean. The sample standard devia-

tions indicate the approximate accuracy of the

individual estimates. This standard deviation,

which stays more or less constant, is approxi-

mately equal to the Cram_r-Rao bound for the

noisy case being studied here. In fact. the

Cram_r-Rao bounds of the 20 noisy cases used

here (not shown in the table) do not change much

from the values found for the particular noisy

case being studied. Both of these results are in

good agreement with the theoretical character-

istics 24 of the Cram_r-Rao bounds and maximum

likelihood estimators in general.

These examples indicate the value of obtaining

more sample time histories (experiments or, in an

aircraft example, dynamic maneuvers). Having more

samples improves confidence in the estimate of the

unknowns. This a|so holds true in analyzing actu-

al flight time histories (maneuvers); thus, it

is always advisable to obtain data from several

maneuvers at a given flight condition to improve

the hPst estimate ()f each derivative.

_T

Th_ magnitudes of the Cram6r-Rao bounds and of

th_ error between the correct and estimated values

,_f [;) are determined large]y by the length of the

time history and the amount of noise added to the

c_)rrecLt tiiTie hist_)ry. F()r the case being studied,

it i_ apparent from Fig. 5 that a large amount of

noise is added to the time history. The effect of

the measurement noise power (GG*, Eqs. (3) and

(4)) on the estimate of Lp for the time history

is indicated in Table 4. The estimate of Lp is

much _mproved by decreasing the measurement noise

power. A reduction in the value of G to on_-tenth

of the value in the noisy case being studieJ

yields an acceptable estimate of Lp. For real

data, the measurement noise is reduced by im-

proving the accurary of the sensor outputs.

aW

Two-Dimensional Case. In this section, the

cost function dependent on both Lp and L6 is

studied. The no-noise case is examined first,

followed by the noisy case.

Even thouqh the cost function is a function of

c)nly two unknovms, it. is much more difficult to

visualize than is the one-dimensional case. The

cost function over reasonable ranges of Lp and L 6

is shown in Fig. 12. The minimum must lie in the

curving valley that gets broader toward the far

side of the surface. The cost increases very

rapidly in the region of positive Lp and large

values of L 6. The reason for this rapid increase

is just an extension of the argument for positive

Lp, given in the previous section. With this pic-

ture of the surface, we can look at the isncl_ne_

of constant cost on toe Lp-L 6 plane (fig. 13).

The minimum of the cos_ functioh is inside the

closed isocline. The steepness of the cost func-

tion in the positive Lp direction is once again

apparent. The more nearly elliptical shape inside

the closed isocl_ne indicates that the cost is

nearly quadratic there, so fairly rapid conver-

gence in this region would be expected. The Lp

axis becomes an asymptote for cost as L_ approaches

zero. The cost is constant for L 6 = O because

no response would result from any aileron input;

the estimated r_sponse is zero for all values of

Lp, resulting in constant cost.

The region of the minimum value of the

cost function (Fig. 13), as seen in the ear}ier

example (Table i), occurs at the correct values

Lp = -0.2500 and L6 : 10.O. This is also evident

by looking at the cost function surface shown in

Fig. 14. The surface has its minimum at the cor-

rect value. As expected, the value of the cost

function at the minimum is zero.

As in the one-dimensional case. the primary

difference between the cost functions for the no-

noise and noisy cases is a shift in the cost func-

tion. In the one-dimensional case, the cost

function for the noisy case was shifted so that

the minimum was at a higher cost and a more nega-

tive value of Lp. In the two-dimensional case,

the cost function exhibits a similar shi_t in

both the Lp and the La directions. The shift is

small enough that the difference is not visible at

the scale shown in Fig. 12. Figure 15 shows the

isoclines of constant cost for the noisy case,
which look much like the isoclines for the no-

noise case shown in Fig. 13; the difference is

a shift in Lp of about 0.1, the difference at

the minimum for the no-noise and noisy cases.

Heuristically, one can see that this would hold

true for cases with more than two unknowns; the

primary difference between the two cost functions

is near the minimum.

The next step is to examine the cost function

near the minimum. Figure 16 shows the same view

of the cost function for the noisy case as shown

in Fig. 14 for the no-noise case. The shape is

roughly the same as that shown in Fig. 14, but

the surface is shifted such that its minimum lies

over tp = -0.3540 and La = 10.24, and it is

shifted upward to a cost function value of approx-

imately 3.3.

To get a more precise idea of the cost func-

tion of the noisy case near the minimum, we must

once again examine the isoclines, The isoclines

in this region (Fig. 17) are much more like ellip-

ses than those in Figs. 13 and 15, The results

from Tahle 2 are included on Fig. 17, so we can



followthe path of the minimization example used

hefnre. Thp first iteration (L : I) brought the

values of Lp and L6 very close to the values at

the minimums, and the second essentially arrived at

the minimum (viewed at this scale). One of the

reasons the convergence is so rapid in this region

is that the isoclines are nearly elliptical, dem-

nnstrating that the cost function is very nearly

quadratic in this region. If we had started the

(;auss-NPwton algorithm at a point where the iSO-

¢lin(,s (Jr(,milch less elliptical (as in some of the

tmr(ler regions in Fig. 15), the convergence would

have progressed more slowly initially, but it

w()ul(I have progressed at much the same rate as it

entered the nearly quadratic region of the cost

tllrl(_ion.

Before C_r_cluding our examination of the two-

di._ensional case, we shall examine the Cram_r-Rao

hound. Figure 18 shows the uncertainty ellipsoid,
which is based on the Cram_r-Rao bound. (The

relationships between the Cram_r-Rao hound and the

uncertainty ellipsoid are discussed in Ref. 69.)

The uncertainty ellipsoid almost encloses the

correct values of Lp and L6. The Cram_r-Rao bound

for Lp and L6 can be determined from the projec-

tion of the uncertainty ellipsoid onto the Lp and

L6 axes and then compared with the values calcu-

lated for the noisy case, which were 0.1593 and

1.116 for Lp and L6, respectively. This projec-

tion is analogous to the case for n unknowns, but

in that case the projection would be the n + I

hyperellipsoid's projection onto a hypersurface.

Estimation Usin_ Flight Data

We have examined the basic mechanics of

()braining maximum likelihood estimates from sim-

ulat_,i examples with one or two unknown param-

(,tars. To make the transition from theory to

practical application, we present results obtained

from analysis of actual flight data and discuss

h()w the aircraft parameter estimation results are

used to solve real problems. In this case we

illustral, _ the necessity of obtaining estimates of

the aircraft coefficients of the differential

(.quaI_ms of ,notion (the stability and control

derivatlves) to solve important and related prob-

l_#s enc()untered in flight. However, the aircraft

stability and control example is only one of sev-

eral apl)licatlons of parameter estimation tech-

niques; tJspful results can he obtained in many

applications where the phenomenology is well

understood. For the computationally difficult

situation usually encountered with actual flight

data, we obtain the maximum likelihood estimates

with the lliff-Maine code (_LES program). 67

Before studying the specific examples, a brief

historical review of some other uses of the esti-

mates is presented.

In the past. the primary reason for estimating

stahility and control derivatives from flight

tests was to make comparisons with wind tunnel

estimates. As aircraft hecame more complex and as

flight envelopes wore expanded to include flight

regimes that were not well understood, new re-

,u:irements of the derivative estimates evolved.

lot many years, the flight-determined derivatives

w(,rP used in simulations to aid in flight planning

and in pilot training. The simulations were par-

ticularly important in research flight test pro-

grams in which an expansion of the envelope into

new flight regimes was required. As more was

learned about these new flight regimes, the com-

plexity of the aircraft, and particularly their

sophisticated flight control systems, increased.

The design and refinement of the control system

for these complex aircraft required higher fidel-

ity simulations. As a consequence, a more con-

plate knowledge of the flight-determined stability

and control derivatives was necessary. Almost

all current high-performance aircraft have very

complex control systems to compensate for their

deficiencies in basic aerodynamic characteristics.

Consequently, most flight test programs for these

aircraft require a complete flight-determined

set of stability and control derivatives, and

parameter estimation techniques for estimating

stability and control derivatives from flight

data have become more sophisticated.

At the Dryden Flight Research Facility of

NASA's Ames Research Center (Ames-Dryden), ana-

lysts have been involved in the estimation of sta-

bility and control derivatives with maximum like-

lihood estimators since 1966 and have success-

fully applied maximum likelihood estimators to

nearly 50 different aircraft configurations. Some

of the experience gained through these applica-

tions is included in the bibliography of Ref. 9.

Recent _es-Dryden applications have conceetrated

on estimating stability and control derivatives

to assist in designing or refining control sys-

tems. Three such applications (to be discussed in

detail) are the F-14, highly maneuverable aircraft

technology (HiMAT), and space shuttle programs.

All three of these programs have made extensive

use of high-fidelity, pilot-in-the-loop simula-

tions, which are implemented using the best wind

tunnel data available. Portions of these flight

test programs were defined to obtain data for

refining simulator models.

The chosen method of enhancing the simulator

model depends on the aircraft involved in the

flight test program. The F-14 aircraft flew sev-

eral flights specifically for defining the sta-

bility and control derivatives over a large angle-

of-attack range because the necessary control

refinement related to the high-angle-of-attack

regime. The HiMAT _ehicle flew several flights

with a positive static margin (stable open-loop

system) so that derivatives could be obtained to

design a control system for flight at a negative

static margin (unstable open-loop system). The

space shuttle entered fro_ space on the most con-

servative trajectory to allow assessment of its

characteristics before an envelope exDansion

was begun.

Once the flight data are obtained and ana-

lyzed, the simu!ator is updated to assist in con-

trol system design and further flight planning.

Where flight results agree with wind tunnel pre-

dictions, confidence in the simulation grows, and

envelope expansion proceeds more efficiently.

The coefficients evaluated in this section

are contained in the aircraft equations of motion,

which are derived and discussed in detail in

Ref. 6.
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I_! F-14 Aircraft

i The F-14 aircraft is a twin-engine, high-

performance fighter with variable wing sweep

(Fig. ig). The Ames-Dryden F-14 program was

_1, intended to improve the handling qualities of the

airplane at high angles of attack by incorporating

! several con;_r,l system techniques.70, 71 The first

•-_ Hart ()f the program was dedicated to obtaining

flight-determined stability and control deriva-

_z tives f()r the subsonic envelope of the F-14 air-

craft, the complete trimmed angle-of-attack range

_ for Math number M ( 0.9.

i 6

In many instances the flight data agreed

with the wind tunnel predictions; Fig. 2U (from

Ref, 70) shows the comparison of CoB (Cn being the

coefficient of yawing moment) as a function of

angle of attack m from flight and wind tunnel

estimates. (Througout this and following dis-

cussions, a subscript to the coefficient denotes

partial derivative with respect to the subscripted

variable.) The symbols denote the estimate, and

the vertical bar designates the uncertainty level

(Cram_r-Rao bound). The agreement is good,

although there is some disagreement at _ > 25°;

nevertheless, the same trends are seen for both

flight and wind tunnel data.

Figure 21 shows the flight-determined C_p

(C_ being the coefficient of rolling n_ent)

as a function of _ for M < 0.55 and for M = 0.9.

There was some uncertainty in the accuracy of the

wind tunnel predictions of because the wind
C_p

tunnel model configur=tion was different from the

flight configuration. The implementation of

C_p at M = o.g in the simulation produced a pre-

viously unsimulated wing rock characteristic that

had been observed in flight. The wing rock had

been a troublesome characteristic, and its simula-

tion was important in impro, ing handling qualities

through control system modifications. Figure 22

shows the flight-determined values of C_B as a

function of _ compared with the results of two

different sets of wind tunnel results. There had

been some concern about the disagreement between

the two sets of wind tunnel results before flight.

At low angles of attack, the three sets of esti-

mates are in fair agreement; however, at m > 15 °,

the flight data lie between the two sets of wind

t_Jnmel data.

A last example from the F-14 aircraft shows

how the wind tunnel and f_ight estimates inter-

play to improve a simulation. After the lateral-

directional derivatives were incorporated in the

simulation, the resulting simulated lateral-

directional motions from a longitudinal-stick snap

maneuver were found to be inconsistent with the

flight response. Since the F-14 program was pri-

marily a lateral-directional investigation, the

longitudinal derivatives in the simulation had not

been updated with the flight-determined values.

When the flight-determined longitudinal deriva-

tives were included in the simulation, the stick

snap response agreed more closely with the flight

response. In tracking down the inconsistency, a

large discrepancy was discovered between the wind

tunnel and flight-determined values of Cm: (Cm

being the coefficient of pitching moment). This

is shown in Fig. 23, where flight-determined

Cm_ is compared with the wind tunnel estimates

of Cm: for the untrimmed and trimmed conditions.

Further investigation showed that the untrimmed

values of Cmm had been put in the simulation and

that the predicted trimmed values of Cm: were in

excellent agreement with flight estimates.

Examples using and show how
C_p, C_B, Cma

flight data, in addition to providing a primary

source of estimates, can be used to help interpret

wind tunnel data; these data can then be used to

improve the simulation at points away from steady-

state flight data. Sometimes wind tunnel data are

available but have been discounted or overlooked,

and flight data can give new credence to these

wind tunnel data.

These F-14 flight data improved the simula-

tion over a large part of the envelope. Since the

F-14 high-angle-of-attack program also needed to

examine responses of a highly transient nature,

more tedious and time-consuming fine tuning of the

simulation was required for flight at other than

near the trimmed conditions. 72 With the resulting

simulation, the proposed control system techniques

were further refined; the result was a more effi-

cient demonstration in flight.

This exemplifies the value of flight test

parameter estimation in improving the handling

qualities of an aircraft through control system

improvements.

Hi _4AT Vehicle

The HiMAT vehicle is a remotely piloted

research vehicle with advanced close-coupled

canards, wing-type winglets, and provisions for

variable leading-edge camber. It is made of

advanced composite materials tO allow for aero-

elastic tailoring and to minimize weight, It

was flown in an unstable configuration because

the wing deformation then resulted in a desirable

camber shape at high load factor and because the

trim drag was reduced.

The HiMAT vehicle73,74 (Fig. 24) was designed

to fly with a sustained 8-g turn capability at

Mach 0,9 at 25,000 ft al*itude and to demonstrate

filght supersonically to Mach 1.4. To attain the

Macb 0.9 condition, it was predicted that the

vehicle must be flown in an unstable configuration

(lO-percent mean aerodynamic cord (MAC) negative

static margin). The philosophy for testing the

Hi MAT vehicle was somewhat different from that for

production aircraft: Flight-determined stability

and control derivatives were to be relied on tO

keep the wind tunnel program to a minimum. The

original simulation data base contained the wind

tunnel data supplemented with some computed

characteristics.

The vehicle was flown in a stable config-

uration to obtain stability and control deriva-

tives with the control feedbacks set to zero.

While these data were being gathered, a control
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system suitable for unstable flight was being

designed, based on wind tunnel tests. Then, with

the flight-determined derivatives, the simulator

was updated and the control system adjusted for

this update so that the unstable vehicle could be

flown safely. Stability and control maneuvers

were perfnrmed at subsonic and supersonic Math

numbers, at angles of attack up to 10 ° , and at

altitudes from 15,000 to 45,0_0 ft. A complete

set of stability and control characteristics was

f)htained for both the longitudinal and lateral-

directi(mal degrees of freedom. 75 Because the

values of the HiMAT derivatives are classified,

the data are p_otted on unlabeled vertical axes;

nevertheless, an assessment of predicted and

flight-determined derivatives can still be made.

All the derivatives, predicted and flight deter-

mined, are corrected to I)-percent MAC. For the

flight conditions flown, there were no aeroelastic

effects noted :n the flight data.

Figure 25 shows flight-determined direction_l

dynamic stability as a function of Mach
CnBdy n

number at _ = 4 ° compared with the rigid and flex-

ible predictions. Flight estimates are about the

same as predictions at M = 0.4 and 0.9, but they

differ significantly in between. In Fig. 26,

CnBdy n is plotted as a function of a at M = 0.9,

showing that the vehicle is slightly unstable in

the lateral-directional axes at the lower angles

of attack. Considering that these data are

plotted for U-percent _IAC, this instability would

be considerably greater and over a wider angle-of-

attack range if the center of gravity were moved

significantly aft (aft movement of the center of

gravity makes any vehicle less stable). The de-

rivatives Cy B (Cy being the coefficient of side-

force) _nd C_p agreed with predictions; however,

(inr was twice the predicted value, Cnp was of

opposite sign, and C_r was a small fra(tion of

predictions. The rolling _noments due to aileron.

C_6DE , agreed fairly well with the rigid predic-

tions; Cn6 r was 25-percent less than predicted;

both Cn6a and Cn6DE showed a positive increment

over prediction. The derivative C_6 r was about

twice the predicted value. Since there were so

many large differences between the flight-

determined derivatives and the _ninimal wind tunnel

set, it was decided to completely reevaluate the

lateral-directional control laws designed for the

unstable configuration using the flight data

instead of the wind tunnel data, which were used

in the original design. Some reasons for this can

he seen in Fig. 27, in which the control deriva-

tives Cn6D E, C_6 r, and Cn6 r are plotted func-

tions of _ at M = 0.9. These differences between

flight and predicted values meant that the simu-

lator had to be extensively revised.

The HiMAT vehicle program was a technology

demonstration program and therefore was required

to demonstrate th_ technology only at specific

design points. A technology demonstration is

quite different from many programs, such as the

F-14 progfam, because only certain steady-state

requirements must be demonstrated. Therefore, all

the points (or flight co_ditions) that needed to

be flown were near steady-state points for which

flight-demonstrated derivatives already existed.

To update the simulator, all the predicted data

were disregarded, and only flight-determined sta-

bility and control derivatives were used. The

knowledge that the aircraft stability and control

derivatives exhibited no significant aernelastic

effects permitted the reevaluation o f the unstable

control system, and the design was simplified.

The control laws designed for the unstable

configuration were much more complex than the

rate-feedback System used for gathering stability

and control derivatives. The new control laws

were modified by (1) adding a lateral acceleration

av feedback to _mprove closed-loop directional

d_namic stabil_ty; (2) addi_e an interconnect

between lateral stick and r_,dder to improve

lateral control characteristics; (3) changing

the various feedback gains'to improve damping

characteristics; and (4) locking the aileron

surface to eliminate adverse yaw and also to

eliminate the possibility of a predicted surface-

buzz problem at higher Mach numbers. This design

of the lateral-directional control system was the

result of an extensive study of possible control

systems using both the simulator and the linear

analysis techniques. When the new control system

was designed, it was implemented on the HiMAT

vehicle, and it was flown in a stable configura-

tion. Control surface doublets were input, and

the responses were compared with the simulator-

derived responses. The comparison was excellent,

giving confidence that the unstable vehicle could

be tested.

The benefits of flying the unstable vehicle

were demonstrated in flight when a O.4-g improve-

ment in sustained-g capability was realized by

changing the center-of-gravity location from the

point of neutral stability to 5-percent MAC aft of

the neutral point. When the unstable vehicle was

flown with a 5-percent MAC negative static margin,

a sustained turn of about 7.8 g was achieved.

Based on these numbers, the HiMAT vehicle should

be able to demonstrate a sustained 8.0-g turn

capability with the 10-percent MAC negative static

margin (unstable vehicle).

in the case of the HiMAT vehicle, flight test

pard,hater estimation became the sole method of

defining the stability and control derivatives.

A control system design for the unstable config-

uration was defined from flight test results.

The adequacy cf the design was demonstrated on

t_e simulation updated with flight data. The

resulting control system enabled the unstable

vehicle to be flown.

A recent investigation of determining the

aerodynamic coefficients for the highly unstable

X-29A vehicle is described in Ref. 69. [his

investigation sheds new light on parameter estima-

tion of unstable systems, which has widespread

application to systems other than those defined

by stability and control derivatives.

Space Shuttle Orbiter

The space shuttle orbiter Is a large double-

delta-wlnged vehicle designed to enter the atmos-
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phereand land horizontally. The entry control

system consists of 12 vertical reaction cont-ol

system (RCS) jets (6 up-firing and 6 down-firing)

and H horizontal RCS jets (a left-firing and

4 right-tirinq), 4 e]evon surfaces, a body flap,

and asp] it rudder surface (Fig. 28). The ver-

tica_ jets and toe elevonS are used for both pitch

anl ruI! c_mtrol. The jets and elevons are used

_y_,_;_etrically for pitch con_rol and asymmetric-

ally f,}r roll control. More informatinn on the

_:nnfi!juratlnn and Fl_ght plan is given in Ref. 76.

Tne F-I4 and HiMAT examples s_(,wed how param-

eter estlmat_nn can h# used _n aq incremental

flight test program, that is, a progressive expan-

slon of the f!1._ht envelope to obtain data in the

more certain areas f_rst and In _ne more chal-

!englng or hazardous ones l_er, Fmwever, the

space Shuttle program COUld not he approact_e _ in

this manner, for the _enicle had tO demonstrate on

the f_rst _llgnt that _t Cn,u',d be flown safely
over most of _ts envelope. Further complicating

the program, this flrs_ flight includ=,d very

hazardous flight rpglmes. The _ubsonic flight and

iandlng characteristics had Deem dE_qonstrated in

the earlier approach and landlng test program,

hut the hypersonic, peak heating, and transonic

reglons were largely unexplored for a vehicle of

this typp.

Extensive wind tunnel tests were performed,

and those data were _ncorporated Into high-

fidelity simulations. No matter how carefully

wind tunnel testR are performed, there are fre-

quently discrepancies between the predictions and

the demonstrated flight charac[eristi_s; there-

fore, uncertainties were defined for each stabil-

ity and control derivative. These uncertainties

(called variat!ons in ;_ef. 77l were based to a

tar(in extent ,m prevlou_!y reported discrepancies

hetween predictions and fl i_jht . 7_

in preparati,)n tot toe flrst fi_qnt, a con-

trol system was developed tn provlde satisfactory

clnsed-looI_ venlcle _Lharacter_stics fo r der;v_-

tires that fell hetweer, toe variations that had

hHpn prPv}n,,s1y defined. After flight data were

obtained, the tl !ght PSt_,mat_S of the stabil ity
and control derivatives were used to _educe the

preflight variations. This reduction then allowed

the control _ngineers to refine the control system

and thereto, re tO improve the shuttle handling

qualities. 'n addition, toe f!ignt-determined
derivatives were used to d_ermine if configura-

tion placards (11m_tat_ons on toe flight envelope)

C01) IC_ De pl(Idlfled r)r removed.

Some of the stahitity and contrnl results

ohtalned from tne first three flights are con-

taine(1 in Rpfs. 79 and RO. ()he interesting

example of wnere parameter estimation played an

important role in the shuttle program occurred

during the f_rst energy-management bank maneuver
on the first entry of the Shuttle (STS-I). The

response to the automated control inputs computed

using the, predicted stabil_ty and control deriva-

tives is shown in F_q. 2g. It should he noted

that the control inputs shown here (and for all

nthr, r simulation comparisons1 are the closed-

loop commands from the Shuttle control laws.

The maneuver was tn be made at a velocity

V = 24,300 ft/sec and at a dynamic pressure

- 12 Ib/ft2.

The actual STS-I maneuver that occurred at

this flight condition is shown in Fig, 30, which

depicts a more hazardous maneuver than was pre-

dicted. At this flight condition the excursions

must be kept small. The flight maneuver resulted

in twice the angle-of-sides!ip B peaks predicted

and in a somewhat higher roll rate than predicted.

Also, there was more yaw-jet firing than was pre-

dicted, and toe mot_on was more poorly damped than

predicted. It _s obvious from comparlng the pre-

dicted with toe actual maneuver (Fig. 31) that the

stability and control derivat;ves were signifi-

cantly different than prei'cted. It is fortunate

that the control system design philosophy dis-

cussed previously had bew_ used for the shuttle.

Although the flight maneuver resulted in excur-

sions greater than planned, the control system

did manage to damp out the oscillation in less

than I min. With a less conservative design

approach, the resulting entry maneuver could

have been a good deal worse.

To assess the problem with the first bank

maneuver, _he flight-determined stability and

control derivatives were compared with the pre-

dictions. Of all the derivatives obtained from

STS-I, the two important ones that differed most

from the predictions at the flight condition being

discussed were C_8 and the rolling moment due to

yaw jet firing, Lyj. Since the entry tends to

monotonically decrease in Math number, the deriva-

tives can be best portrayed as functions of the

guidance System "Math number," which is V/tO00.

Figure 32 shows C_B as a function of guidance Mach

number, and Fig. 33 shows Lyj as a function of

guidance Math number. Only the estimates from

STS-I are shown in these figures.

When )nly the change in CZB was entered into

toe simulation data base, the maneuver looked

very much like the o_iginal orediction (Fig. 29);

however, as e×pected, tne frequency of the oscil-

lations changed to be more representative of the

actual flight frequencies (Fig, 30). The effect

on the simulation of changing only Lyj from the

predictions is shown, with the flight response, in

Fig. 3a. These two time histories are very close,

considering that the other differences between

the flight-determined and predicted derivatives

have been ignored.

It is apparent that the primary problem with

the initial bank maneuver was the poor prediction

of Lyj. The control system software is very

complex, and it cannot be changed and verified

between shuttle missions; therefore, an interim

approach was taken to keep this large excursion

from occurring on _uture flights. The flight-

determined derivatives were put into the simula-

tion data base, and the shuttle pilots practiced

performing the maneuver manually, trying to attain

a smaller response within more desirable limits.

The maneuver was performed manually on STS-2 to

STS-4. Figure 35 shows the manually flown maneu-
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ver frot_ STS-2. For this maneuver, roll rate,

yaw rate, and sideslip angle were within the

desired limits. The maneuver does not look like

the original predicted response, because the de-

rivatives and the input were different and the

basic control system remained unchanged. Since

the response variables were kept low and the inputs

were slower and smaller, the flight responses on

%TS-2 to STS-4 did not show a tendency to oscil-

late. The software was updated for STS-5, and

th_ resulting a,_t_mated maneuver is essentially

indlstinguishable fr'om that shown in Fig. 35.

This maneuver has been used on all subsequent

shuttle fli,lhts.

The application of parameter estimation tech-

nlques t_) tt_e highly complex space shuttle vehicle

will contlnue, and toe results of this application

have and wil) significantly affect the control

system desiun, placard modification, and flight

prnLedures in general.

Cone I.d in 9 Rerlark s

In th_s paper, the aircraft parameter estina-

tlon problem is used as an example of how param-

eter estimation can be applied in many scientific

and engineering fields to assess phenomenology

from observations, and a brief survey of the

literature is presented. The theory, a simple

simulated example, and the application of experi-

mental results to solvp real problems are given

and explained. The maximum likelihood parameter

estimation technique was used in the F-14 program

to effect control system changes that improved

handling qualities at high angles _f attack. The

sane technique provided the primary source of

information for control system r_finement on the

unstable HirIAT vehicle. Space shuttle energy-

management maneuvers have been redefined based on

simulations using flight-determined stability and

control estimates. Moreover, parameter estima-

tion techniques are being relied upon for future

cnntro] system design, placard modification nr

removal, and flight proce_iures in general for

the space shuttle.

Thp explanation of parameter estimation tech-

niques and the d_nonstration of their highly suc-

cessful application to the aircraft prohlems are

intended to inform and to encourage scientists in

other fields to consider these techniques for

application to probiems where a representative

model and high-quality data exist.
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